跳到主要内容

MySQL 到 ClickHouse

简述

CloudCanal 近期实现了 MySQL(RDS) 到 ClickHouse 实时同步的能力,功能包含全量数据迁移、增量数据迁移、结构迁移能力,以及附带的监控、告警、HA等能力(平台自带)。

ClickHouse 本身并不直接支持 Update 和 Delete 能力,但是他自带的 MergeTree 系列表中 CollapsingMergeTreeVersionedCollapsingMergeTree 可变相实现实时增量的目的,并且性能完全够用,能够比较轻松达到 1k RPS 以上的能力。

接下来的文章,简要介绍 CloudCanal 是如何实现这个能力,以及作为用户我们怎么比较好的使用这个能力。

技术点

结构迁移

CloudCanal 默认提供结构迁移,默认选择 CollapsingMergeTree 作为表引擎,并增加一个默认字段 __cc_ck_sign,源主键作为 sortKey,如下示例:

 CREATE TABLE console.worker_stats
(
`id` Int64,
`gmt_create` DateTime,
`worker_id` Int64,
`cpu_stat` String,
`mem_stat` String,
`disk_stat` String,
`__cc_ck_sign` Int8 DEFAULT 1
)
ENGINE = CollapsingMergeTree(__cc_ck_sign)
ORDER BY id
SETTINGS index_granularity = 8192

ClickHouse 表引擎中,CollapsingMergeTree 和 VersionedCollapsingMergeTree 都能通过标记位按规则折叠数据,从而达到更新和删除的效果。VersionedCollapsingMergeTree 相比 CollapsingMergeTree 优势在于同一条数据的不同变更可以乱序写入,但是 CloudCanal 选择 CollapsingMergeTree 主要原因在于2点

    1. CloudCanal 中同一条记录必定是按源库变更顺序写入,不存在乱序情况
    1. 不需要维护 VersionedCollapsingMergeTree 中的 Version 字段(版本,也可以起其他名字)

所以 CloudCanal 选择了 CollapsingMergeTree 作为默认表引擎。

写数据

CloudCanal 写数据主要包含全量和增量两种,即单次搬迁存量数据和长期同步,两者写入略有不同。全量写入对端主要工作是批量和多线程,因为 CloudCanal 结构迁移默认设置了标记位字段 __cc_ck_sign default 值为 1, 所以就不需要做特殊处理。

对于增量, CloudCanal 则需要做 3 件事情。

  • 转换 Update、Delete 操作为 Insert 这一步有两件事情要做,第一件是按照操作类型,填充标记字段值,其中 Insert 和 Update 为 1 ,Delete 为 -1 ,第二件是将对应增量数据的前镜像或者后镜像填充到结果记录中,以便后续 insert 写入。
 for (CanalRowChange rowChange : rowChanges) {
switch (rowChange.getEventType()) {
case INSERT: {
for (CanalRowData rowData : rowChange.getRowDatasList()) {
rowData.getAfterColumnsList().add(nonDeleteCol);
records.add(rowData.getAfterColumnsList());
}

break;
}
case UPDATE: {
for (CanalRowData rowData : rowChange.getRowDatasList()) {
rowData.getBeforeColumnsList().add(deleteCol);
records.add(rowData.getBeforeColumnsList());

rowData.getAfterColumnsList().add(nonDeleteCol);
records.add(rowData.getAfterColumnsList());
}

break;
}
case DELETE: {
for (CanalRowData rowData : rowChange.getRowDatasList()) {
rowData.getBeforeColumnsList().add(deleteCol);
records.add(rowData.getBeforeColumnsList());
}

break;
}
default:
throw new CanalException("not supported event type,eventType:" + rowChange.getEventType());
}
}
  • 按表归组 因为 IUD 操作已全部转换为 Insert, 且为全镜像(所有字段都填充了值),所以可以按表归组,然后批量写入。即使单线程也能满足大部分场景的同步性能要求。
protected Map<TableUnit, List<CanalRowChange>> groupByTable(IncrementMessage message) {
Map<TableUnit, List<CanalRowChange>> data = new HashMap<>();
for (ParsedEntry entry : message.getEntries()) {
if (entry.getEntryType() == CanalEntryType.ROWDATA) {
CanalRowChange rowChange = entry.getRowChange();
if (!rowChange.isDdl()) {
List<CanalRowChange> changes = data.computeIfAbsent(new TableUnit(entry.getHeader().getSchemaName(), entry.getHeader().getTableName()), k -> new ArrayList<>());
changes.add(rowChange);
}
}
}

return data;
}
  • 并行写入 将按表归组的数据使用并行执行框架执行,具体不详述。

举个"栗子"

  • 添加数据源 1.jpg
  • 创建任务,选择数据源和库,并连接成功,点击下一步 2.jpg
  • 选择数据同步,建议规格至少选择 1 GB.目前 MySQL->ClickHouse 结构迁移自动过滤,所以选择无效。点击下一步 3.jpg
  • 选择表,默认 ClickHouse 上创建 CollapsingMergeTree 表引擎,并自动添加 __cc_ck_sign 折叠标记字段。点击下一步 4.jpg
  • 选择字段,点击下一步 5.jpg
  • 创建任务 6.jpg
  • 等待任务自动结构迁移、全量迁移、数据同步追上 7.jpg
  • 造点 Insert、Update、Delete 负载 8.jpg
  • 延迟追平状态,停止负载 9.jpg
  • 检查源端 MySQL 表数据,以其中一张表为例 10.jpg
  • 检查对端 ClickHouse 表数据,不一致?!! 11.jpg
  • 手动优化下表,数据一致。虽然可以等待 ClickHouse 自动优化,但是如果需要直接得到准确结果,可手动优化(注意:手动优化可能导致数据库机器压力过大) 12.jpg

常见问题

我在ClickHouse上已经创建了表怎么办?

目前比较建议直接使用 CloudCanal 自动结构迁移的方式来创建任务。

如果已建表为 CollapsingMergeTree 表引擎,请将标记位字段改成 __cc_ck_sign Int8 DEFAULT 1`,再创建任务(此时就不再自动结构迁移,而是使用已存在表)。

如果为其他表引擎,暂时不支持(主要是不支持增量能力,需要 CloudCanal 进一步探索)。

同步过去的数据什么时候合并?

当 CloudCanal 同步数据到 ClickHouse 时,ClickHouse 并不会实时合并数据,也没有一致性可言,所以一般情况是等待合并,或者直接手动合并(造成机器高负载、高IO),如 optimize table worker_stats FINAL

DDL 怎么做?

目前 CloudCanal 还未支持到 ClickHouse 的 DDL 同步,产品实现上,目前是忽略的。所以如果做 DDL ,加字段建议对端先加,再加源端,减字段反之。

总结

本文简要介绍了 CloudCanal 实现 MySQL(RDS) 到 ClickHouse 数据迁移同步的能力,具备一站式、数据实时特点,从技术点、例子、以及常见问题角度展开。文章如有错误,烦请大家勘误,后续也欢迎大家试用,提供宝贵的意见和建议。